Identification	Subject	Math 101, Calculus-1, 6 ECTS	
	Department		
	_		
	Program	Undergraduate	
	Term	Fall, 2024	
	Instructor	Lala Atamova	
	E-mail:	ljafarova@khazar.org	
	Phone:	(+994 50) 324 15 56	
D	Classroom/hours Monday: 11:50-13:20, Wednesday: 11:50-13:20		
Prerequisites	The prerequisites are high school algebra and trigonometry. Prior experience with calculus is helpful but not necessary.		
Language	English		
Compulsory/Electiv e	Required		
Required textbooks	Core Textbooks:		
and course materials	4 6 77		
		mas, et al, Thomas' Calculus: Early Transcendental, 12th	
		ison-Wesley (2010), (http://libgen.org/)	
	Supplementary book		
	1. James Stewart, Essential calculus. Early transcendentals, Second Edition, Brooks/Cole (2013) (http://libgen.org/)		
Course outline	Calculus is a transition course to upper-division mathematics and computer		
Course outilite		idents will extend their experience with functions as they	
	study the fundamental concepts of calculus: limiting behaviors, difference		
	quotients and the derivative, Riemann sums and the definite integral,		
	antiderivatives and indefinite integrals, and the Fundamental Theorem of		
	Calculus. Students review and extend their knowledge of trigonometry and basic		
	analytic geometry. Important objectives of the calculus sequence are to develop		
	and strengthen the students' problem-solving skills and to teach them to read,		
	write, speak, and think in the language of mathematics. In particular, students		
	learn how to apply the tools of calculus to a variety of problem situations.		
	Calculus plays an important role in the understanding of science, engineering,		
	economics and computer science, among other disciplines. As it's mentioned		
	this introductory calculus course covers differentiation and initial techniques of		
	integration of functions of one variable, with applications. Topics include:		
	Concept of functions; trigonometric functions		
	Limits and continuity		
	 Derivative; 	Differentiation rules	
	·	ns of derivative to investigation of extremes and graphing	
	Antiderivat		
Course objectives		nit; tangent to curve; differentiation; chain rule; extreme	
Course objectives	_		
		, concavity of a curve, antiderivative, definite and indefinite	
Loaming outcomes	integrals, area betwee	een curves. urse the students should be able:	
Learning outcomes			
	• To find o	one-sided limits of functions;	
	To find 1	imit of functions at points and infinity;	

	To find deriv	rative of functions;		
	To draw a graphs of nontrivial functions using limits and			
	derivatives;			
	 To show the connection between area and the definite integral; 			
	To apply fundamental theorem of calculus to evaluate definite			
	integral;			
	To apply differentiation and integration to solve real world			
	problems.			
Teaching methods	Lecture		X	
	Group discussion		X	
	Experiential exercise		X	
	Course paper x			
Evaluation	Methods	Date/deadlines	Percentage (%)	
	Midterm Exam		30	
	Class Participation		5	
	Quizzes		20 (2 quizzes)	
	Activity		5	
	Final Exam		40	

Policy

Preparation for class

Total

The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions. Throughout the semester we will also have a large number of review sessions. These review sessions will take place during the regularly scheduled class periods.

100

Ouizzes and examinations

Quizzes may be given unannounced throughout the term. There will be no make-up quizzes.

Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

Ethic

Use of any electronic devices is prohibited in the classroom. All devices should be turned off before entering class. This is a university policy and <u>violators will</u> <u>be reprimanded accordingly!</u> Students should not arrive in late to class!

	Tentative Schedule					
Week	Date/Day (tentative) Topics		Textbook/ Assignments			
1	16.09.24	Rates of Change and Tangents to Curves Limit of a Function and Limit Laws	Ch.2.1, 2.2			
2	18.09.24 23.09.24	 Limit of a Function and Limit Laws The Precise Definition of a Limit 	Ch. 2.3			
3	25.09.24 30.09.24	Practice One-Sided Limits	Ch. 2.4, 2.5			
4	02.10.24 07.10.24 09.10.24	 Continuity Limits Involving Infinity; Asymptotes of Graphs Tangents and the Derivative at a Point 	Ch. 2.6, 3.1,			
5	14.10.24 16.10.24	 The Derivative as a Function Differentiation Rules 	Ch. 3.2, 3.3			
6	21.10.24 23.10.24	The Derivative as a Rate of ChangeDerivatives of Trigonometric Functions.	Ch.3.4,3.5			
7	28.10.24 30.10.24	The Chain RuleImplicit Differentiation	Ch. 3.6, 3.7 Quiz (10 pts)			
8	04.11.24 06.11.24	 Derivatives of Inverse Functions and Logarithms Practice 	Ch. 3.8			
9	11.11.24 13.11.24	 Midterm Exam Inverse Trigonometric Functions, Related Rates 	Ch. 3.9, 3.10			
10	18.11.24 20.11.24	 Linearization and Differentials Extreme Values of Functions 	Ch. 3.11, 4.1			
11	25.11.24 27.11.24	 The Mean Value Theorem Monotonic Functions and the First Derivative Test 	Ch.4.2, 4.3			
12	02.12.24 04.12.24	 Concavity and Curve Sketching, Indeterminate Forms and L'Hôpital's Rule Antiderivatives. 	Ch. 4.4, 4.5, 4.8			
13	09.12.24 11.12.24	 Area and Estimating with Finite Sums Sigma Notation and Limits of Finite Sums 	Ch. 5.1,5.2			
14	16.12.24 18.12.24	The Definite IntegralThe Fundamental Theorem of Calculus	Ch. 5.3, 5.4			

			Quiz (10 pts)
15	23.12.24 25.12.24	 Indefinite Integrals and the Substitution Method Substitution and Area Between Curves 	Ch. 5.5, 5.6
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.